Characterization of APS Storage Ring Impedance

Advanced Photon Source Argonne National Laboratory Yong-Chul Chae*

Indiana U.-ANL-Fermilab Meeting October 4, 2002

*e-mail address: chae@aps.anl.gov

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Summary

Impedance of APS storage ring will be characterized by

- Construction of impedance database
- Validation through measurement and tracking simulation

Outline of talk

- I. Introduction to wakepotential and impedance
- II. Old method and its limitation: motivation for developing new method
- III. Impedance database
- IV. Schedule for completion
- V. Conclusion

I. Introduction to wakepotential and impedance

Wakefield

Wakepotential

Wakepotential-to-Impedance

Wakepotential of bunched beam

$$V(t) = \int W(t - t')I(t')dt'$$

Define impedance

$$W(t) \Leftrightarrow Z(\omega)$$

• Then,

$$Z(\omega) = \frac{V(\omega)}{I(\omega)}$$

 Impedance relates harmonic components of voltage and current. Thus its unit is Ohm, same as circuit definition → Broadband Resonator (BBR) Model

Broadband Resonator Model

Definition (R-L-C circuit model)

$$Z_{\parallel}(\omega) = \frac{R}{1 + jQ(\omega/\omega_r - \omega_r/\omega)}$$

• What we really need is

$$\frac{Z_{\parallel}}{n} = \left(\frac{Z_{\parallel}}{n}\right)_{0} \frac{(\omega/\omega_{r}) + jQ[1 - (\omega/\omega_{r})^{2}]}{(\omega/\omega_{r}) + Q[1 - (\omega/\omega_{r})^{2}]^{2}},$$
where $n = \frac{\omega}{\omega_{0}}$

- Only 3-parameters to determine $\rightarrow Q$, ω_r , $(Z/n)_0$
- It is customary to assume

$$Q=1$$
, $\omega_r=c/b$.

• Then only unknown parameter is

$$(Z/n)_0$$

- A number to characterize the whole impedance
- → Impedance Budget Table

Impedance Budget

2 3 4	RF Cavity (HOM) ID Transition	16 34	0.2	0.02
3		94		
		O ⁴	0.03	0.06
4	RF Transition	4	0.01	0.003
	Shielded Bellow	160	0.04	0.007
5	Shielded Transition	80	0.02	0.003
6	ВРМ	360	0.05	0.01
7	Valve	80	0.01	0.01
8	Crotch Absorber	160	0.01	0.002
9	Flange full-penetration weldment	480	0.01	0.008
10	Ante-Chamber Transition	120	0.003	0.001
11	Elliptical tube weldment	80	0.001	0.001
12	Shielded end conflat	80	0.001	0.001
13	Resistive Wall at cut-off freq.		0.01	0.01
14	Space Charge		1.E-5	0.03
15	Others (kickers, bumpers, ion pump ports, etc.)		0.3	
	Subtotal		1.	0.15
	Budget (Subtotal \times 2)		2 Ω	$0.3~M\Omega/m$

(Compiled by W. Chou, H. Bizek, L. Emery, Y.C. Chae)

Impedance Estimate by Tune Slope Measurement

*Tune Slope Measurements: Zt = 0.4 Mohm (S. Milton, 1996)

(K. Harkay's)

Single bunch instability: transverse mode coupling instability

Force due to transverse wake defocuses beam, i.e., detunes betatron frequency.

When v_{B} crosses (mvs) modulation sidebands, synchrotron motion can couple to transverse plane and beam can be lost unless chromaticity is sufficiently large/positive.

Tune slope increases with no. of small gap chambers: mode merging threshold decreases.

III. Impedance Database

Goal

Wakepotential(APS Storage Ring) = 20*(8mm ID Chamber) + 2*(5mm ID Chamber) + 400*(BPM) + 80*(C2 Crotch Absorber) +......

Standardize Wakepotential

- Data in SDDS format
 S, Wx, Wy, Wz
- 2. Uniform simulation conditions rms bunch length → SIGz = 5 mm, mesh size → dz = 0.5 mm, wakelength → SBT = 0.3 m
- 3. Deposit the authorized wakepotentials in ~chae/ImpedanceDatabase/SR
 - → Available to everyone to read files

Vacuum Chamber Components

- Old components (experience)
 - Insertion Device Chambers
 - RF Cavities + Transition
 - Crotch Absorbers
 - Horizontal/Vertical Scrapers
 - Septum Intrusion
 - Stripline Monitors
- New components
 - BPMs
 - SR absorber between rf cavities
 - Vacuum port (slotted rf screen)
 - Shielded bellow

SCRAPER

Example: Insertion Device Chambers

• Insertion Device Chambers

- 5-mm-gap chamber
- 8-mm-gap chamber
- 12-mm-gap chamber

Steps taken for 3-D Wakepotential

- I. 2-D ABCI calculation for circular chamber (High confidence)
- II. 2-D ABCI vs. 3-D MAFIA for circular pipe (Compare)
- III. 3-D MAFIA for elliptical chamber (Final result)

2-D ABCI vs. 3-D MAFIA (Compare)

Geometry

Results

R=2cm to R=4mm transition; Mesh=1 mm; SigZ=10 mm

3-D MAFIA Results for Elliptical ID Chamber (Wakepotential & Impedance)

IV. Schedule for Completion

Goal

Complete "Impedance Database + Validation" in 8 months (by April 2003).

Collaborations for Impedance Database

- Drawings provided by Mechanical and Design/Drafting Group
- Pro/E-based modeling will be interfaced with the commercialized version of MAFIA (Computer Support and Design/Drafting Group)
- SDDS software support by OAG (Wakepotential combiner, Impedance fitting)
- Wakepotential calculation by Accelerator Physics Group (Chae), Diagnostic Group (X. Sun)

Collaborations for Validation

- elegant on super-fast "clustered computer" (supported by OAG)
- Three different impedance/wakepotential options available: impedance in numerical form, BBR model impedance, quasi-wakepotential
- Chae and Harkay from APG and Sereno from OAG will collaborate in the validation of impedance model via *elegant* simulation

We are looking for the collaboration between labs to measure the impedances by the wire method.

V. Conclusion

- Impedance database provides a uniform framework to characterize the impedance of the storage ring.
- Maintenance of SR impedance as new components are added in the ring becomes straightforward via "standardized wakepotential."
- Once the impedance model becomes validated, we could predict "dynamic effect" before a new component is installed in the ring.